
UNCLASSIFIED 

AD 

DEFENSE DOCUMENTATION CENTER 
FOR 

SCIENTIFIC AND TECHNICAL INFORMATION 

CAMERON STATION   ALEXANDRIA   VIRGINIA 

DOWHGRADED AT 3 TOAR INTERVALS: 
DECLASSIFIED ATTER 12 YEARS 

DOD DIR 520010 

UNCLASSIFIED 



THIS REPORT HAS BEEN DECLASSIFIED 
AND CLEARED FOR PUBLIC RELEASE. 

DISTRIBUTION A 
APPROVED FOR PUBLIC RELEASE; 

DISTRIBUTION UNLIMITED. 



O CO 

NAVORD REPORT 2741 

SINGLE VS. TRIPLE ADDRESS COMPUTING MACHINES 

22 JANUARY 1953 

l 
I 
I 

U. S. NAVAL ORDNANCE LABORATORY 
WHITE OAK, MARYLAND 



NAVORD Report 27UI 
Aeroballistic Research Report No. IU9 

SINGLE VS. TRIPLE ADDRESS COMPUTING MACHINES 

Prepared by: 

Calvin C. Bigot 

ABSTRACT: The question:  "Which is more desirable a single address or a 
triple address confuting machine?" has been discussed, often with fervor 
from an engineering, economic, statistical and "personal preference" point 
of view. We limit our consideration to the question:  "Which, of the two 
types of machines, requires fewer words to specify a sequence of instructionsT" 
Utilizing a slightly idealized, (but we beDieve physically realizable), notion 
of a single address machine we obtain a partial answer to this question by 
proving a mathematical theorem, (page ?)•  Our result is embodied in Corollary 
2, page 6. The strength of the result suggests that "in general," i.e. from 
a statistical point of view, fewer words are required to code by means of 
(idealized) single address than by triple address. 

U. S. NAVAL ORDNANCE LABORATORY 
WHXTJ5 OAK, MARYLAND 



NAVORD Report 27^1 22 Januexy 1953 

In tliis report  there is advanced a basic formulation and solution of the problem 
"vhich electronic computer design is best, that vith a multiple address system 
or that vith a single address system." The study has been carried out as a part ; 
of task NR-O^U-OO^j, Numerical Analysis and Theoretical Mechanics. 

EDWARD L. WCODYARD 
Captain, U3N 
Commander 

H. H. IIURZWEG, Chief 
Aeroballistic Research Department 
By direction 

ii 



i 

NAVDRD Report 2Jkl 

SING-LB VS. TRIPLE ACTRESS COMPUTING MACHINES 

1.  INTRODUCTION 

By a Machine vord of a triple address machine we mean a sequence of four 
elements consisting of an operation code, first operand address, second operand 
address and storage address, respectively. By a machine half-vord of a single 
eddress machine we mean a sequence of two elements, the first being an operation 
code, the second an operand address. 

By an operation is meant an operator together with the numbers on which it 
operate? ("+ is ai- operator; "1+2" is an operation). Assume a sequence of 
distinct arithmetic operations specified. Then the number of machine words,, in 
a triple address machine, required to specify this sequence of operations is 
equal to the number of operations involved in the sequence. For example, if the 
sequence of operations is: 

(1)  (*J b) 
(2) 
(3) 

(c.d) 
((cd)-e) 

(< {k)    (((c.d)-e) / (a-*)) 
(5) f|g);v(f g) - g-f , 
(6) ((f|g)N((cd)-e) / (u+b)))j (x\y) - (y/x) 

then six triple address machine words are required to specify this sequence- 

We require our single address machine to have the property that the result 
of any particular operation is immediately available, (i.e. without any prelinH- 
nary (programmed) shifting from one register to another), for possible use with 
the next operator• We assume thst our single address machine is capable of 
performing inverse subtraction, (5), ana inverse division. (6). Whether or not 
the triple address machine can perform these operations or not is inconsequential. 
We allow, too, the possibility of oiir machines performing unary operations. 

We sometimes interpret (aob) as the result of applying the operator ob to 
the operand, (or argument), a. With this interpretation in mind we rather imagine 
our single address machine has a register, called, say, the argument register 
which houses the argument of the function which the machine is about to compute. 
When a function is computed the result 1? directed into the argument register 
where it is available for possible use with the next function. When a nur.ber *r 
directed into the argument register it displaces any number which may ha/e o:*.-> 
there. 

We say that an operation utilizes the preceding result if one of its c>pera.:ds 
is the preceding result. This situation is indicated in the table below by '••*'• 
under "P"; the contrary situation by "-" under "P." 

The number of machine woids (by definition equal to one half the number of 
machine half-words), required to specify one of a sequerce of operations in a 
single address machine is given by the following table: 



NAVURD Report 27^1 

(1) + _               j* 

(2)     + +      1 

(3)     - -       1 

(»)     - +      14 

A "+" under "S" indicates the result of the operation is to be stored; 
a "-" indicates the contrary. Under "W" is given the corresponding number of 
machine words required to specify the operation in a single address machine. 
We bee from the table a single address machine requires more or less machine 
words than c; triple address machine to specify a sequence of operations ac- 
cording as the number of time1; the result of an opeiation is stored in more 
or less than the number of times the preceding result is utilized. We prove 
the first alternative does not hold, assuming the result of the last operation I 
in the sequence is not stored. 

We indicate the machine half-words which may be used to specify the sequence 
of six operations given above with our single address machine: 

Case of Table 
(1) Transfer a to argument register. (TTJ 

Add b to a. ; 
Store result. 

(2) Transfer c tn  argument register. (3) , 
Multiply c by a. 

(3) Subtract e fron previous result. (l) 

(k)  Divide previous result by (a+b). (2) j 
Store result. 

(5) Transfer f to argument register (3) 
Inverse subtract g from f. 

(6) Inverse divide previous result by (1) 
(k)  result. 

jsiich liie above Indicates a machine half-word. Thus five and one half words 
are required to specify this sequence of operations by means of ci i,5.ngle address 
machine. 

If T is the number of machine words required for a triple address machine, 
if U is the number of machine words required for a single address machine, 
if P is the number of times the preceding result is utilized, 
if S is the number of times the result of an operation is stored then 

T - U = £ (P-3) '    j 



f 
I 

s 

NAVORD Report 27^1 

and this is true in general, (for arbitrary sequences of distinct operations). 
For each time a preceding result is utilized and the result not stored single 
address "gains" f word over triple address, while if preceding result is not 

.» used and result is stored, single address "loses" \ word to triple address. 
In the other two cases there is no "gain" or "loss." We shall prove ?> S. 

r 

2. TRANSITION TO FORMALITY 

We introduce intermediate notions of SAO and TSAO for the purpose of making 
gradual the transition from ordinary" notation to the prefixed operator notation* 
which we employ. We define SAO as follows; 

% 

(1) A letter is an SAO. 
(2) If F is a SAO and u a unary operator then U(F) is a SAO. 

If F and G are SAO's and o a binary operator then (FoG) is a SAO. 
sequence of numbers and unary and binary operators is a SAO only when 

this follows from (l), (2), (3). 
iif 

We define a transformed SAO, (TSAO), by means of rules (l), (2), (k),   (with SAO 
replaced by TSAO and "(3)" replaced by "(3')")> a»d 

(3*) If F and G are TSAO's and b a binary operator then b(F,G) is a TSAC. 

It is clear there is a biunique correspondence between SAO's and TSAO's. 

For example (vl(a+(b.c)))+d) is a SAO and the corresponding TSAO is 
+ (\/"(+(a,.(b,c))),d). The TSAO with parentheses and commas deleted is 
+V+a .b c d. 

i. 
We claim that deleting all parentheses and commas in a TSAO creates no 

ambiguity in interpreting the "deleted TSAO." Otherwise stated if two distinct 
t TSAO's are "deleted," the resultant sequences of symbols are distinct. A 

"deleted TSAO" is a word as defined below if we identify the operators with 
connectives (of the alphabet mentioned below) and use letters a^ as below. 

The corollar to the theorem of the next section then justifies our claim. The 
"deleted TSAO" corresponding to ohe first example is: 

\ i f • / c d e 

Order may be introduced into the "deleted TSAC," (thus inducing order into 
the TSAO and the SAO), and parentheses may be properly inserted to recover the 
original TSAO as follows: 

j 
Read from right to left until the first operator is encountered, then count 

two letters, (one letter if the operator is unary), from left to right and put 
parentheses around the two, (or one) letters separating the letters with a conam. 
The operator together with the letters is then reckoned as a single letter and 
the process is iterated. Using this order of operations we note that fie result 

#     of an operation must be stored, if and only if there is a next operation and the 
number of letters between the operator and the next, (from right to left), 

•This notation is generally attributed to Lukasiewicz. 



RAVDRD Report 2Tjkl 

operator is two or one depending on vhetVer the next operator is binary or 
unary.  (This motivates the definition of long segment 'below.) An operator 
utilizes the previous result if and only if there is a previous operator and 
•here are less than two or one letters between the operator and tne previous 
operator depending on whether the operator is binary or unary. (This moti- 
vates the definition of short segment below.) 

3. A SIMPLE LANGUAGE* 

Let tue alphabet consist of: 

the letters - a,, a,, a-, ... 

the connectives - f ' i, j = 1, 2, 3, ... 

A finite, possibly null, sequence of members of the alphabet is called a 
string. Die length of the string is the number of elements of the sequence. 
If A is a string of length m and B a string of length n then AB is the string 
of length m + n whose i•1 member, Kt-H , is the i^31 member of A and 
whose (m + j)tn member, / if i >t, is the j**1 member of B. We define a word by 
induction on the length cf a string. A string, S, _s a word if and only if 
one of the following holds: 

(1) S - a, 

(2) W^, W2,.., Wn are words and S • f* V^ W2 ...W where i, n are positive 
integers. 

The alphabet together with the rules of word formation and a suitable 
interpretation or words is a simple language. 

Hie rank R(s) of a string S is defined a6 follows: 

(1) R (ai) = - 1 

(2) R (f1) - n - 1 
n 

(3) If S = Sx  32 , (Sx , J2 strings), R(s) = R(S1) + R(S2) 

(k)  The rank of the null string is zero. 

If S « S. S2 then S. is called a head of S. If S2 is not aa31 the head is 
called proper. 

Theorem** A string S is a word if and only if the rank of every proper head of 
S is non-negative and the rank of S is -1. 

•Rosenbloom,  Die Elements of Mathematical Loeic," pp 152-7. 
••Ibid, p 154. 



HAVCRD Report 2Tjkl 

Coroi1»ry If W = S. 3? is a wurd and Sp is not null then there is one and 

only one word which is a head of 3 , (where S and S are strings). 

k.    THE THEOREM 

In what follows our alphabet consists of the single letter a and the two 
connectives 1, 2 of degrees and one and two respectively. 

Examples of Words 

(1) la 

(2) 2 a a 

(3) 2 1 a 2 a a 

(4) 2222222a e. aaaaa2aa 

Examples of Strings Which Are Not Words 

(5) 1 

(6) a 1 a 

(7) 2 a 2 a a 2 a 

We observe if W is a word then W = S a; if, further W / a then W • nT where 
S and T are strings and n is a connective.  (This is Immediate from the 
definition.) 

We define a segment of a string S as a string of the form mTn if 
S « U m T n V and m and n are connectives where U, V, T, are strings, T being 
a 3tring, possibly null, of a's only. A segment 3 is called a long segment 
if and only if one of the following holds: 

S • 1 a 0 

S * 2 a a U 

where U is a string; a segment is called a short segment if it is not a long 
segment• 

No segments occur in examples (l), (2), (5), (6).  In example (3) S = 2 1 
is a short segment, T • 1 a 2 is a long segment. In exampJe (7) S • 2 a 2 is a 

short, segment while 2 a a 2 is a long segment.  In (U)s = 2aaaaaaa2is 
a long segment. Toe "number of short (long) segments" shall always mean the 
number of short (long) segments counting multiplicity. In (4) there are six 
short segments. 

Theorem In every  word W the number of short segments is not exceeded by the 
number of long segments. 



NAVORD Report 27^1 

Proof We use Induction on the length of V. 

We denote the number of short segments occurring in W by W. and the number 

of long segmentc by W1. If W • a or W • 1 a or W » 2 a a the validity of the 

theorem is obvious. We have already observed and now we emphasize that if 
W / a then W is of the form Sa • n T where n is a connective and S, T strings. 
We consider the following cases: 

(1) W • 1 W' W / a 

(2) W » 2 W'W", W' j  a 

(3) W - 2 a W!, W: j  a where W,W:,*f are words. 

Case (1); Clearly 

Wg = 1 + w
f
s while Wx = W'x 

so that using the inductive assumption the theorem is valid in this case. 

Case (2); Wg ^ 1 • W'e + W"s 

Vx   -    1 • W'  + W'^ 

Indeed equality actually holds in the first case and if V / a also in the second 
case, as may be seen from the corollary above. Bxe theorem follows again with 
the use of the inductive assumption. 

Case (3): Ws • 1 + W^ ! 

Wl * Wi 
as before the theorem follows which completes the proof. 

Corollary 1 If If / a then 

T ? 2 S + 1 

T ^ 2 P + 1 where S • number of long segments of W 

P > number of short segments of W 

T • total number of connectives in W 

Proof If W / a then 

P + S + 1 • T 

Corollary 2 In the notation of page 2, T 3* U. 



JIAVORD Report 27^1 

Proof P « W , S • VL  from paragraph Immediately preceding section 3; 

T - U = i (P-S) from page 2 and Ws £ W from the theorem. 

Remarks 

(1) The theorem immediately above fails if we allow connectives of degree 
greater than two. Indeed if n > 2 is a connective of degree n then 

n2aa2aa.   .   .2a a,   (2aa occurring n times), 

is a word with one short segment and (n-l) long segments, (extending the notion 
of long and short segment in obvious fashion). 

(2) If a sequence of, (not necessarily distinct), operations are given we 
associate with it a sequence of SAO's as follows: 

Of all "sub-SAO's" which occur more than once we seek one of minimum 
"length" and record it, replacing all occurrences of this SAO by a single 
letter. IT there are other "multiple occurring" SAO's of the same "length" 
we record them one by one replacing all occurrences of each by distinct letters 
distinct from the first, "nils process is iterated until the remaining SAO 
consists of distinct operations. We then have a sequence of distinct sequences 
of distinct operations (in a slightly extended sense since we are now admitting 
letters). If R is the "length" of the sequence of sequences then our result 
modifies to 

i   (R-l) + P ? 5 

for the resvlt of each SAO in the sequence of SAO's must be stored, except for 
the last. 

(3) A cHchotomous conditional transfer doer, not require more single address 
machine-words than triple address machine-word3 while a trichotomous conditional 
transfer may. 

(h)  As a by-product of the techniques employed one notes that a machine 
could be built, (or a subroutine on an existing machine could be constructed), 
which would be capable of interpreting a sequence of symbols as a sequence of 
arithmetic operations and capable, too, of deciding by itself when and where 
the result of an operation must be stored. 

(5) The ordered SAO obtained by introducing order into the SAO in accordance 
with the rule given on page 2, may be regarded formally as a sequence of SAO's. 
Every ordered SAO corresponds to a sequence of arithmetic operations but the 
converse is not true. This fact doesn't effect our conclusion since the machine 
word requirement in a triple address machine does not depend on the order in 
which the operations are performed. It is easy to see, however, that a neoeseary 
and sufficient condition for a sequence of arithmetic operations, written say as on 
page 1, to correspond to an ordered SAO is that every binary operator utilizing 
one (or two) previous result(s) as operand(s) must obtain the result(s) from the 
previous first (and second) line(s) and every unary operator utilizing a previous 
result must obtain it from the preceding line. 



HAVORD Report 2TJkl 

(6) In stating the conditions, (top page k),  under which the preceding 
result is utilized ve have allowed replacing operations like soy by yOz IT 
the two .re equal. (Here "o" and "0" stand for operators.) 

If we replace each xoy} with y the previous reeultj by yQx in the given 
ordered SAO and then write the corresponding TSAO, the corresondlng "deleted 
TSAO" and the corresponding word, then all short segments of this word will 
be of the form 22, 21, 12, or U. (Bone will be of the form 2a2 or 2al.) 

v 

6 


	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012

